Particle ratios in PHENIX at RHIC Hiroaki Ohnishi Brookhaven National Laboratory for the PHENIX Collaboration. - Investigation of particle production mechanism in heavy ion collisions. - What can we learn from Particle ratios? - Ratios contain basic information about collision dynamics. - * Chemical potential of quarks. μ_S and μ_B - * Chemical freeze out temperature. - * Degree of baryon stopping power. pbar/p, μ_R - This information will define boundary conditions of collision dynamics. Conditions at Freeze-out. This will be a first step to investigate whether Quark-Gluon-Plasma is formed or not. # PH#ENIX Identified Hadron spectra Single particle spectra of pion, kaon, proton and their anti particles. Au+Au collisions at $\sqrt{s_{NN}}$ =130 GeV, Minimum bias data. # **PH**ENIX** K+/K- ratio as a function of P_T Within the systematic errors, K+/K- does not depend on P_T over the measured range # PH KENIX K+/K- ratio as a function of centrality No dependence as a function of centrality. A similar lack of centrality dependence was observed in experiments at SIS, AGS and SPS. #### **PH**ENIX** Summary of K+/K- ratio * K+/K- ratio decreases as a function of √s (0.8GeV/c <PT<1.6GeV/s) K+/K- @ Min.Bias= 1.08±0.03(stat)±0.22(sys.) * K+/K- production at RHIC follows the trend observed in the experiments at SIS, AGS and SPS. ### pbar/p ratio as a function of centrality Npart No strong dependence as a function of centrality. # **ENIX** pbar/p ratio as a function of P_T - pbar/p ratio is either flat or falling slightly at higher pT values. - It is vary hard to extract pbar/p ratio at P_T above 3 GeV/c due to small statistics. ### PH***ENIX** Summary of pbar/p ratio pbar/p ratio at RHIC is dramatically increasing from AGS and SPS energy. No clear Centrality and P_⊤ dependence are seen within errors. ### PH#ENIX Summary of K+/K- and pbar/p 0.4 0.5 0.6 Both K+/K- and pbar/p are closing to 1.0 from AGS to RHIC Baryon chemical potential ~ 40MeV Not baryon free($\mu_R!=0$). 0.7 0.8 0.9 # p/π + and anti- p/π as a function of pT p/π + and anti- p/π - ratio @ pT=2.0 GeV/c decreases dramatically at small Number of participants. #### Hiroaki Ohnishi [BNL] Thermal Fest 07/20/01 #### PHENIX preliminary # **PH**ENIX** p/π + and anti- p/π - - p/π + and anti- p/π ratios integrated within 0.5 GeV/c<pT<2.2 GeV/c. - No strong dependence as a function of centrality. # **PH**ENIX** p/π + and anti- p/π - Ratios as a function of collision energy. 0.5 GeV/c < pT < 2.2 GeV/c p/π + and anti- p/π - ratio at RHIC getting close to the value at p+p collisions. - * Particle ratios in Au+Au collisions at √s=130 GeV are presented. - * No clear centrality dependence is seen in K+/K- and pbar/p ratios. - * K+/K- and pbar/p ratios show no dependence with P_T . (Kaon; P_T <1.6 GeV/c, Proton; P_T <3.0 GeV/c) - * Particle ratios@ minimum bias, @ mid rapidity - * K+/K- = 1.08 ± 0.03 (stat.) ± 0.22 (sys.) - * pbar/p = 0.64 ± 0.01 (stat.) ± 0.07 (sys.) - * K+/K- and pbar/p ratios are dramatically decreasing / increasing from SPS and AGS energies. - * K/π and p/π ratios increase as a function of P_T . $p/\pi+$ and $pbar/\pi-$ ratio are clearly approaching to 1.0. - * Baryon density at RHIC is much less than AGS and SPS, but not baryon free at mid rapidity.